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Abstract | Topoisomerases introduce transient DNA breaks to relax supercoiled DNA, remove
catenanes and enable chromosome segregation. Human cells encode six topoisomerases

(TOP1, TOP1mt, TOP2a, TOP2B, TOP3a and TOP3p), which act on a broad range of DNA and RNA
substrates at the nuclear and mitochondrial genomes. Their catalytic intermediates, the
topoisomerase cleavage complexes (TOPcc), are therapeutic targets of various anticancer drugs.
TOPcc can also form on damaged DNA during replication and transcription, and engage specific
repair pathways, such as those mediated by tyrosyl-DNA phosphodiesterase 1 (TDP1) and TDP2
and by endonucleases (MRE11, XPF-ERCC1 and MUSB81). Here, we review the roles of
topoisomerases in mediating chromatin dynamics, transcription, replication, DNA damage
repair and genomic stability, and discuss how deregulation of topoisomerases can cause
neurodegenerative diseases, immune disorders and cancer.
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Humans vs. Escherichia Coli

Humans have 3 types of topoisomerases and 6 TOP genes while Escherichia Coli
has 2 types of topoisomerases and 6 genes
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Humans vs. Escherichia Coli

Humans have 3 types of topoisomerases and 6 TOP genes while Escherichia Coli
has 2 types of topoisomerases and 6 genes
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Topoisomerases and TOP
Genes In Humans

Not counting SPO11, there are 3 types of topoisomerases and 6 TOP genes
in humans
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Comparisons

Comparison of the 6 human topoisomerases

Genes Chromosonme Proteins Localization Drugs. Mechanism Polarity™ Main functions
TOP1 |20g12-q13.1 Topd Nucleus Camptothecins Swivelling Nuclear supercoiling
100 kDa monomer Indenos (LMPS) controlled 3Py relaxation
TOPIMT g8q24.3 Toplmt Mitechondria e rotation dsDMNA mitochondrial supercoiling
’ 100 kDa monomer relaxation
TOP2A 17g21-g22 Tﬂpzt_‘" _Nucleus ) Mthrawc!ir_"es" Strand passage Decatenation/replication
170 kDa dimer Mitochondria [doxorubicin] dsDMA 5Py
TOrP28 Ip2a Taplﬂ_- _Nutleus } _Etn-pnsid(: ATPase Transcription; Unknotting
180 kDa dimer Mitochondria mitoxantrong
ror3Aa | 17p12-p11.2 Top3a Nucleus Strand passage DMA Replication with BLM==
100 kDa monomer | Mitochondria e weithin 5Py
TOP3E 22q11.22 Top3f Nucleus single strands RMNA topoisomerase with TDORD3
100 kDa monomer cytoplasm

*=: Covalent linkage between the catalytic tyrosine and the end of the broken DiN&
=*: Bloom syndrome, RecQ helicase




Topoisomerase and genomes

Topoisomerases and tyrosyl DNA phosphodiesterases (TDPs) handle both the nuclear and
mitochondrial genomes and their imbalance is source of genomic instability
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Top1

TOP1 (nuclear Top1)
TOP1TMT (mitochondrial Top1)
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Topl and Top?2 differences

Biochemical differences between Topl and Top2
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Relaxation of DNA

Relaxation of DNA by Topoisomerase | (top1)

Rotation:
Supercoil

.ﬁ ?’ V

Topl1 is essential for transcription and replication (repair?)




Replication machinery
Transcription machinery
Chromatin remodelling

Nuclear matrix

o4 v %
Supercoiled DNA %" = O s Relaxed DNA

c — TOP1 cleavage
=3 complex
(TOP1cc)

4 addition to Drugs,
Top1 cleavage complexe
can be induced by
endogenous and exogen
DNA lesions (abasic site
oxidized bases,
carcinogenic adducts...)

@d during apoptosis.

1 Pommier, Nature Rev Cancer 2006




DNA supercoiling

DNARBupercoiling
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The Two Human Top 1s

The two human Top1s
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Clinically Approved
Camptothecin derivatives

Camptothecin derivatives
in clinical trials
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Camptothecin

Camptothecin and its derivatives used for the treatment of cancers

Camptothecin (lactone)
ACTIVE

Camptothecin (carboxylate)
INACTIVE

Irinotecan l Carboxylesterase
(CPT11) |V o
HO. - Y
“’ B ‘ Active metabolite
SN-38 NN of CPT-11
CH
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Camptothecin is an alkaloid from
Camptotheca acuminata Decne, a
rapidly growing tree from China.
Discovered by Monroe Wall and
Mansukh Wani who also discovered
taxol.




Interfacial inhibitor

Camptothecins as one of Nature’s Paradigms for Interfacial Inhibitors

R R2
Camptothecin -H =z -H
Topotecan  —CH-N = -OH
=Gk

5

+ CPT

Staker .. Stewart, PNAS 2002; 99: 15397



CPT analogs
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Why New Topl Inhibitors?

Why New Top1 Inhibitors?

Because camptothecins are effective anticancer drugs.
Hence, Top1 is a validated target for cancer treatment.

Because agent with a common target have different pharmacology,
toxicology and exhibit different anticancer activity (for instance top2
poisons or tubulin inhibitors [colchicine <-> vinblastine]).

Because camptothecins have limitations:
« Bone marrow and intestinal toxicity (adults).
*  Drug efflux substrates (ABCG2).
«  Chemically unstable: E-ring opening.




Pharmacological Limitations of
Camptothecins:

Pharmacological limitations of camptothecins:

1. Unstable at physiological pH

_.t"_ Ky
OH O —0H 0O

lactone form Carboxylate form

Active form

Serum Albumin
Binding

2. Camptothecins bind reversibly to the topl cleavage
complexes. Hence cleavage complexes reverse rapidly after
drug removal => prolonged infusions




TOP1 inhibitors

Rationale for the development of non-camptothecin TOP1 inhibitors

<= Camptethechn Jderivatives (Irinotecan and Topotecan) are potent anticancer agents and
highly selective TOFL inhibitors

= Camphothecing are selective for HE (BRCA) deficient twmors
= Camptothecing are fhe only chemical class of TOPL inkhibitors -[rn-prljr ubaling, 'I'-I:IF'E_:
< Camptothecing have well-established limitations

= Chamlcally wnsbable (inactivated within minutes In plasma)

<+ Reversibly black TOPL-DMNA complexes (long agpaiure raguired fo maximize «fface)
+  Elmninated from cancer cells by ABC drug «fflux tramsparters [(ABOGE - ASCEI)

+  Short plasma half-life {2-3 hours due to rapid clearance)

«  Doge-limiting bone marrew towicity

¥ Severe diarrhea (Irinotecan)



Indenoisoquinolines and LMPs

Non-camptothecin TOP1 inhibitors developed by the NCI-Purdue:

the Indenocisoquinolines: the “LMPs”
A

T F _%h
P L e
£g ' - HU)-\ -
£ g bi_,_- .y 4 3, __} .
ﬂiﬁ“"m”':} ! 'l"_H_'t- s ,-"""MFH
O oM O
Camptothecin (lactona) Campioihecin (carboxylale)
ACTIVE INACTIVE
B
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. i NSC 706744

LMP400 (Indotecan) and LMP776 (Imidotecan) completed Phase 1
LMP744 is in phase 1

Joint NCI-Purdue University patent, licensed to Linus Oncology Antony, 5, Kiselew, Pommier,, . Cushman



Comparative oncology trials

Comparative Oncology Trials Consortium CCR-COP website
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COP | comparative oncology program

Goals:
9 1. Compare LMP400, LMP776 and LMP744

4 2. Determine MTD in dogs with lymphomas

: 3. Determine and compare activity of 3 drugs

4. Determine pharmacokinetics in blood and tumor
5. Determine target engagement:

1. yH2HAX

2. TOP1 downregulation
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Indotecan and imidotecan trials

Summary of the clinical oncology trial:

* The two clinical indenoisoquinolines, LMP400 (indotecan) and LMP776 (imidotecan)
exhibit antitumor activity in dog lymphoma.

* The 3" indenocisoquinoline, LMP744 shows even greater antitumor activity.

» The dose limiting toxicity of the indenoisoquinolines (MTD = 17.5 mg/m? for LMP776;
MTD = 65 mg/m? for LMP400; MTD = 100 mg/m? for LMP744) is bone marrow
suppression. No diarrhea.

= The PK of the LMPs shows long half-lives: LMP744: 17 h; LMP400: 11 h; LMP776: 6 h.
* LMP744 shows remarkable tumor retention and accumulation
= yH2AX response demonstrates target engagement for all drugs




Precision therapeutics

Precision therapeutics can be defined as the ability to:

1. prescribing effective therapies only to those patients who will respond
effectively (cure) < Tumor molecular signature: SLFN11 + HRD...

2. while limiting toxicity to normal tissues and minimizing side effects
< Targeted delivery

G
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Camptothecins

Second Generation Camptothecins with Targeted Delivery

Company
Merrimack

Cerulean Pharma Inc.

MNektar Therapeutics

ProLymx
Immunemedics
(Seattle Genetics)

Immunomedics

Daichi Sankyo
Tarveda Therapeutics
Nippon Kayaku

Ariel University
CHOP Philadelphia

* FDA Approved, Ocfober 2015
** FDA Break through, February 2016

*E® FDA Break through, August 2017 (Breast)

Active Derivative

(Fayload)

Irinotecan (CPT11)

Camptothecin

Etirinotecan
(20 position)
SN-38
SN-38
(20 position)

SN-3I8

DXd (Exatecan)

SN-38
(10 position)
SN-38

Camptothecin
SN-38

L

Camptathecing as

warheads

Formulation
(Conjugate; Target)
Liposome

PEG
PEG (Pegol)

PEG
ADC - TROP2 [TACSDZ)

ADC-CEACAMS

ADC - HERZ
HDLC - Conjugate HspS0

Polymeric micelles
(PEG-polyglutamate]
HDC - ALOS-4

Tocopherol exyacetabe
nanaparticles

¢

Turfar=spacific delivery




Top2

Top2

Top2a — TOP2A: Replication

Highly expressed in replicating and
cancer cells

Top2pB — TOP2B: Transcription

Expressed both in replicating and
differentiated cells
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Two Top2 enzymes
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Top2

Top2 catalyze a broad range of reactions

Quinolones
Aclarubicin Ellipticines
Doxomblcm Azatoxins
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Transcription

TOP1 Pommier, Y., Sun, Y., Huang, S. & Nitiss, J.L.
2016 Nature Rev Mol Cell Biol

10P28

Figure 2 | Topoisomerases and transcription. Transcription incurs topological constraints that result from the
progression of RNA polymerase Il (Pol ll). Positive supercoiling (Sc’) of the DNA template takes place ahead of the
transcription bubble, which in turn obstructs further Pol Il movement., and negative supercoiling (Sc'). which promotes
the formation of RNA-DNA hybrids (R loops), accumulates behind it. TOP2 and especially TOP 1 enzymes function ahead
of Pol Il to remove positive supercoils, whereas relaxation of negative supercoils behind the transcription apparatus relies
on TOP1 and TOP3p. In addition, TOP1 regulates the activity of the transcription factor TATA-box-binding protein (TBP)
at promoter TATA boxes independently of its catalytic activity. The formation of TOP2-mediated transient DNA
double-stranded breaks at promoter regions in certain genes is crucial for transcription activation. TOP1 is also recruited
to certain enhancer regions to promote (ligand-dependent) enhancer activation by generating transient DNA
single-stranded breaks. Topological barriers are genomic regions where the DNA is not free to rotate around its axis

and require TOP1 and TOPZ2 to relax supercoils (Sc). TF, transcription factor.
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DNA replication
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Functions of topoisomerases in DMNA
replication. a. Initiation of DMNA replication regquires
separation of the two parental strands, which
generates negative supercoiling (Sc-) at the origin
of replication and positive supearcoiling in the
flanking regions due to topological barriers, such as
nuclear matrix attachment sites or insulators.
Positive suparcoiling is dissipated by TOP1 and
TOP2a to allow replication fork progression
{arrows). b. Replication elongation generates
positive supercoiling ahead of the replication fork
and negative supercoiling behind it, Positive
supercoiling is removed by TOP1 and TOP2a,
whereas negative supercailing can be removed by
TORP1, TOP2w or TOP3a. TOP2a can also remaowve
precatenanes, which are formed when the fork
rotates during elongation. ¢. Conwverging forks
generate high positive supercoiling bebween them.
d. Upon replication completion, catenaneas are
removed by TOP2ac (left) and hemicatenaneas by
TOP 3 (right). Topological barriers are genomic
regions where the DNA is not frees to rotate around
its axis, for example owing to hindrance by
macromolecular complexes,

Pommier, ¥, Sun, ¥, Huang, S. & Mitiss, J.L.
2016 Nature Rev Mal Cell Biol



Anticancer
Top2-targeted
drugs

Antibiotics
Top2-targeted
drugs

Top2 drugs
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Etoposide

Structure of a
topoisomerase |l
cleavage complex
(Top2cc) trapped
by etoposide (VP-
16)



| evofloxacin

Antibacterials

Structure of a
topoisomerase IV
_EiN.»  cleavage complex
- (Topo IVcc)
} trapped by the

... quinolone,
levofloxacin




Interfacial inhibition

TRENDS in Pharmacological Sciences Vol.26 No.3 March 2005
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Interfacial inhibition of macromolecular
interactions: nature’s paradigm for
drug discovery

Yves Pommier' and Jacqueline Cherfils?

Laboratory of Molecular Pharmacology. Center for Cancer Research, National Cancer Institute, National Institutes of Health,

Bethesda, MD 20892-4255, USA
Laboratocire d" Enzymologie et Biochimie Structurales, CNRS, Gif sur Yvette, France
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NATURE REVIEWS | DRUG DISCOVERY VOLUME 11 | JANUARY 2012

Interfacial inhibitors: targeting
macromolecular complexes

Yves Pommier’ and Christophe Marchand'

Abstract | Interfacial inhibitors belong to a broad class of natural products and synthetic
drugs that are commonly used to treat cancers as well as bacterial and HIV infections.

They bind selectively to interfaces as macromolecular machines assemble and are setin
motion. The bound drugs transiently arrest the targeted molecular machines, which can
initiate allosteric effects. or desynchronize macromolecular machines that normally
function in concert. Here, we review five archetypical examples of interfacial inhibitors:
the camptothecins, etoposide. the quinolone antibiotics, the vinca alkaloids and the novel
anti-HIV inhibitor raltegravir. We discuss the common and diverging elements between
interfacial and allosteric inhibitors and give a perspective for the rationale and methods
used to discover novel interfacial inhibitors.
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Deletion of TOP33, a component of FMRP-containing
mRNPs, contributes to neurodevelopmental disorders

Georg Stoll'-*2 O1li P H Pictilidiinen®**2, Bastian Linder'*E, [aana Suvisaari®, Cornelia Brosil, William Hennah®%,
Virpi Leppii®, Minna Torniainen®, Samuli Ripatti®-?, Sirpa Ala-Mello®, Oliver Pliéttner”, Karola Rehnstrim?®,
Annamari Tuulio-Henriksson®, Teppo Varilo™), [onna TallilaZ, Kati Kristiansson®, Matti Isohanni®,

Jaakke Kaprio®®®, [ohan G Eriksson!® 1, O0li T Raitakari'*", Terho Lehtimiki'™, Marjo-Riitta Jarvelin?8-21,
Veikko Salomaa??, Matthew Hurles?, Hreinn Stefansson??, Leena Peltonen®= 424025 Patrick F Sullivan 227,

Tiina Paunio® 2 Jouko Linngvist™5, Mark | Daly2®*, e Fischer!, Nelson B Freimer?! & Aarno Palotic3-30

Implicating particular penes in the generation of complex brain and behavior phenotypes requinres multiple lines of evidence.

The rarity of most high-impact genetic variants typically precludes the possibility of accruing statistical evidence that they are
associated with a given trait. We found that the enrichment of a rare chromoasome 22q11.22 deletion in a recently expanded
Morthern Finnish sub-isolate enabled the detection of asscciation betweesn TOFIE and both schizophrenia and cognitive impairment.
Biochermical analysis of TOP3 R revealed that this topoisomerase was a component of cytosolic messenger ribonuclecsproteins
(mRNFs) and was catalytically active on RMA. The recruitment of TOPZE to mRNPs was independent of RMA cis-elerments and

was coupled to the co-recruitment of FMRP, the discase Feme product in Eracgale X mental mlardarl:mn =-rndrnm-= 'J'l.lr ltsulhi indicate
a previcusly unknown role for TOPIE in mARMA metabolism and suggest that it is invelved in develop d

Top33 is an RNA topoisomerase that works with fragile
X syndrome protein to promote synapse formation

Dongyi Xu!'-5" Weiping Shen™'%, Rong Guol, Yutong Xue!, Wei Pengl, Jian Sima?, Jay Yang®, Alexci Sharov®,
Subramanya Srikantan®, Jiandong Yang', David Fox 111", Yong Qian®, Jennifer L Martindale®, Yulan Piao®,
James Machamer®, Samit R Joshi®, Subhasis Mohanty®, Albert C Shaw®, Thomas E Lloyd”, Grant W Brown?,
Minoru S H Ko®, Myriam Gorospe?, Sige Zou™ & Weidong Wang!

Topoisomerases ane crucial for selving DNA topological proflems, but they have not been linked to RNA metabalism. Here we
show that human topoisomerase 33 (Top3p) is an RNA topoisomerase that biochemically and genetically interacts with FMRP,

a protein that is deficient in fragile X syndrome and is known o regulate the translation of mRNAsS that are important for neuronal
function, abnormalities of which are linked to autism. Motably, the FMRP-Tep3 | interacticon is abelished by a disease-associated
mutation of FMRP, suggesting that Top3f may contribute to the pathogenesis of mental disorders. Top3 3 binds multiple mRNAS
encoded by genes with neuronal functions linked to schizophrenia and autism. Expression of one such gene, that encoding
protein Brosine kinase 2 (pik2, also known as focal adhesion Kinase or FAK), is redueced in the neuromuscular junctions of TeeIF
mutant flies. Synapse formation is defective in Top3 P mutant flies and mice, as well as in FMRP mulant flies and mice.

Our findings suggest that Top3 R acts az an RNA topoisomerase and warks with FMREP to promote the expression of mRMNAS

that are crucial for neurcdevelopment and mental health.




Top3A and Top3B

TOP3 alpha and beta function in different protein complexes and biological processes
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DNA damage

Topoisomerase-induced DMNA damage

# Conversion of TOP1cc into DSB by replication “run-off*
—— =» TOP1 needs to be removed by TDP1
andfor 3"-flap endonucleases [XPF-ERCC1)

=> D5SB repaired by homologous recombination

# TOP1cc also form DSEB when on opposite strands or
cpposite to a preexisting single-strand break

:% %: # TOP2cc readily form DSB when concerted cleavage
on both strands and disjonction of the homodimer

Toplor protealysss o mechanicel disfoam g

= ¥ Collisions of polymerases and helicases (green ellipse)
with trapped Top cleavage complexes (Stop sign)

== Protein-DMNA complexes blocking DNA metabolism

# Topological defects resulting from enzyme sequestration
' 2 3 in the cleavage complexes: accumulation of
== supercoils (Top1 and Top2) (1)
=> knots (Top2) (2)
== catenanes [Top2] (3]




Topoisomerases and disease

Table 1 | Drugs, DNA alterations and physiological processes that lead to the formation of persistent TOPcc

Causes Consequences for TOP1 enzymes Consequences for TOP2 enzymes

Anticancer drugs acting as Trapping of TOP1cc by irinotecan, topotecan. Trapping of TOP2cc by etoposide,

interfacial inhibitors'>*

Oxidative DNA lesions
(8-oxoguanine, 8-oxocadenosine
and 5-hydroxycytosine)

Abasic sites and DNA
mismatches

Carcinogenic base adducts
(methylated bases, exocyclic
adducts, benzolalpyrene adducts
and crotonaldehyde adducts)

Nicks and DNA strand breaks

UV lesions (pyrimidine dimers
and 6.4-photoproducts)

Ribonucleotide incorporation
into DNA

Natural and food products

Genetic defects

Transcription activation

indenocisoquinolines™ and tumour-targeting
camptothecin derivatives*>%>>

Induction and trapping of TOP1cc?*5%*%

Formation of irreversible TOP1cc??*

Induction and trapping of TOP1cc??% 7%

Formation of irreversible TOPl1cc,
double-stranded breaks, genomic deletions
and recombination*1¢7.168.236.237

Induction of TOP1cc******

Formation of TOP1cc that generate nicks
with 2°,.3"-cyclic phosphate ends and short
deletions in repeat sequences'* '

Unknown

Unrepaired TOPl1cc due to TDP1
defects??’7299219 in cooperation with
ATM defects™™

Stabilization of TOP1cc at enhancers®?

teniposide, doxorubicin, epirubicin.

idarubicin and mitoxantrone®

Induction and trapping of
TOP2cc?™®

Formation of irreversible
Topzcclm.IZIw?Z‘)

Induction and trapping of
TOPZCC))OJI)-I)‘,

Formation of irreversible TOP2cc?*®

Enzymatic inhibition?*®

Stabilization of TOP2cc with
asymmetrical cleavage?> *%241

Stabilization of TOP2cc by flavones.

tea and wine products®®®

Unrepaired TOP2cc due to TDP2
defects™

Stabilization of TOP2cc at
promotersbi.bﬁ_l‘dl.ICl

ATM, ataxia telangiectasia mutated: TOF. tyrosyl-DNA phosphodiesterase: TOPcc. topoisomerase cleavage complex.
*Indenoisoquinoline derivatives are in clinical trials.

Pommier, Y., Sun, Y., Huang, S. & Nitiss, J.L.
2016 Nature Rev Mol Cell Biol



Replicative DNA damage

Replicative DNA damage induced by TOP1cc (Topoisomerase | cleavage complexes)

a b g } DSE Replication run-off
TOP1 5. -

Irreversible > >
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Pommier, ¥., Sun, ¥., Huang, 5. & Mitiss, J.L.
2016 Nature Rev Mol Cell Biol
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DNA repair

Box 1 | DNA—protein crosslink repair pathways and human health

It is intriguing that germline mutations in almost all identified genes that encode components of the three main DNA—
protein crosslink (DPC) repair pathways result in human syndromes that are characterized by genome instability, cancer
predisposition, premature ageing and/or neurological pathologies. Whether all of these phenotypes are directly related
to a defect in DPC repair or to other cellular functions of these proteins, is not entirely clear in all cases. The MRN
complex, for example, has crucial functions during repair of DSBs, which are clearly related to the radiosensitivity and
immunodeficiency that are observed in patients with mutations in genes that encode MRN subunits. Below, we briefly
discuss the main diseases that are associated with mutations in DPC repair proteins.

Repair by tyrosyl-DNA phosphodiesterases

Spinocerebellar ataxia, autosomal recessive, with axonal neuropathy (SCAN1; OMIM: 607250) was first identified in a
large Saudi Arabian family (nine affected individuals) that had homozygous mutations in the tyrosyl-DNA
phosphodiesterase 1 (TDP1) gene, which map to chromosome 14q31-14q32 (REF 91). Clinical features of SCAN1 include
spinocerebellar ataxia (with late onset and slow progression) and areflexia, followed by signs of peripheral neuropathy,
with the absence of non-neurological symptoms that are otherwise common in ataxia telangiectasia (telangiectasias,
immunodeficiency, and cancer predisposition). Interestingly, the TDP1-H493R variant, which causes SCAN1, is not only
catalytically compromised but also becomes covalently trapped in the process of repairing Top1 adducts®’. However,
despite this pathological gain-of-function of the TDP1-H493R variant, this form of SCANL1 is a recessive disorder,

as wild-type TDP1 is able to repair the TDP1-H493R adducts in heterozygous individuals.

Spinocerebellar ataxia, autosomal recessive 23 (SCAR23; OMIM: 616949) has been identified in three Irish brothers who
were born to consanguineous parents, and in an unrelated Egyptian case. SCAR23 has been associated with a homozygous
mutation in the TDP2 gene on chromosome 6p2 (REF. 40). Clinical features include progressive spinocerebellar ataxia,
epilepsy and intellectual disabilities.

Repair by the MRN complex

Clinical features of ataxia telangiectasia-like disorder 1 (ATLD1; OMIM: 604391) include slowly progressive cerebellar
degeneration that results in ataxia and oculomotor apraxia, and dysarthria, but without telangiectasia or major defects
in immunoglobulin production, and without major cancer predisposition but with radiosensitivity. ATLD1 is caused by
homozygous or compound heterozygous mutations in the MRE11 gene on chromosome 11q21 (REFS 93,94).

Nijmegen breakage syndrome (NBS) ataxia telangiectasia variant V1 (OMIM: 251260) is caused by homozygous or
compound heterozygous mutations in the NBS1 gene on chromosome 8q21. More than 90% of patients are homozygous
for a five base pair deletion (657del5), which leads to a frameshift and truncation of the NBS1 protein®°2%. There are no
reliable estimates of worldwide prevalence, but it is likely to approximate to 1 in 100,000 live births (most common in the
Slavic populations of Eastern Europe)®®. Clinical features of this syndrome include microcephaly, growth retardation,
immunodeficiency, predisposition to cancer (mainly non-Hodgkin lymphoma), and radiosensitivity; neither ataxia nor
telangiectasia are present. Compound heterozygous mutations in the RAD50 gene (on chromosome 5q31.1) that give rise
to low levels of RAD50 cause Nijmegen breakage syndrome-Llike disorder (NBSLD; OMIM 613078)'°°. Clinical features
of NBSLD include microcephaly, growth retardation, chromosome instability, radioresistant DNA synthesis, radiation
hypersensitivity and slight, non-progressive ataxia; there are no signs of telangiectasia or immunodeficiency and
no evidence of cancer predisposition'°%1°%,

Repair by DPC proteases

Homozygous or compound heterozygous mutations in the SPRTN gene (on chromosome 1g42) cause Ruijs—Aalfs
syndrome (RJALS; OMIM: 616200). Clinical features of RJALS include growth retardation, early-onset hepatocellular
carcinomas, micrognathia, chromosomal instability and sensitivity to genotoxic agents®®°°.
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Topoisomerase
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Figure S | TOPcc repair. a | Tyrosyl-DNA phosphodiesterase 1 (TDP1) and TDP2 (although much less efficiently and

therefore shown in parentheses) cleave the TOP1 tyrosyl-DNA covalent bond (middle). releasing TOP1 and leaving

a 3’-phosphate end (right) that needs to be further processed by polynucleotide kinase phosphatase (not shown).

b | TOP2 cleavage complexes (TOP2cc) are preferentially repaired by TODP2 and much less efficiently by TOP1 (middle)

in vertebrates, releasing TOP2 and leaving a 5"-phosphate (right). which can be readily ligated. Yeast, which do not

encode a TDP2 orthologue, use Tdp1 to excise both Toplcc and Top2cc. In the endonuclease pathways (left).

topoisomerases are released with the segment of DNA to which they are attached by the action of endonucleases:

the polarity is opposite for TOPlcc (parta) and TOP2cc (part b). Pommier, Y., Sun, Y., Huang, S. & Nitiss, J.L.
2016 Nature Rev Mol Cell Biol



Repair pathways

Parallel repair pathways for abortive topoisomerase cleavage complexas:
Excition by two dissimilar tyrosyl DA phosphodiesterases: TDPL and TDP2

= Endonucleases (Mrell; NER...)

TOP1 =}
¥

L
phospodenerapes ¥

M{
3 TDF1
5 (NI

DA

TOR2

BrgEE G

2 TOP2

- L3
3

DA .t Erdonecioases 5-. DA
ICHR MAM, XPs..)

TDPL has a broad range of DNA repair functions beyond
TOP1cC fepar:

3'-end cleansing activity: 3'-phosphoghcolates (H0;,
bletnmycing IR)

F-dRP [hNES, alkoylating agents] (IBC]*

abacavic capacitabine] (JBC; MAR}®: 3" -nuedeasidase
Both in the nucleus and metechondria (EMBO J}

Rode in pencmic stabdlity in the nensous

[(PHAS)

Coupled with PARP1 [IBC: DMAR)"

Also excises TOF2oc (IBC)* {no TDEE in yeast)

TOPZE aks has DMNA repair fundtions. beyond TOP2oc:

-

=

S end tynosyl-DMA phosphodiesterase: VpG
wilinkase [policvinus replication) (HPY replication)
Crystal structares [MERER; IBC)®: sirmilarity with AFEL
(%422 5 fingers) but different from TORL
Recruitment to TOP2ce by Ub (JBC)*

Activity on TOP2ec requings denaturation) protealysic
{JBC}*

52



Parallel repair pathways

Mormal cells have parallel repair pathways for abortive TOPlcc
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